Strong Nash Equilibria in Games with the Lexicographical Improvement Property

نویسندگان

  • Tobias Harks
  • Max Klimm
  • Rolf H. Möhring
چکیده

We introduce a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the Lexicographical Improvement Property (LIP) and show that it implies the existence of a generalized strong ordinal potential function. We use this characterization to derive existence, efficiency and fairness properties of strong Nash equilibria. We then study a class of games that generalizes congestion games with bottleneck objectives that we call bottleneck congestion games. We show that these games possess the LIP and thus the above mentioned properties. For bottleneck congestion games in networks, we identify cases in which the potential function associated with the LIP leads to polynomial time algorithms computing a strong Nash equilibrium. Finally, we investigate the LIP for infinite games. We show that the LIP does not imply the existence of a generalized strong ordinal potential, thus, the existence of SNE does not follow. Assuming that the function associated with the LIP is continuous, however, we prove existence of SNE. As a consequence, we prove that bottleneck congestion games with infinite strategy spaces and continuous cost functions possess a strong Nash equilibrium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong equilibria in games with the lexicographical improvement property

We study a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the lexicographical improvement property (LIP) and show that, in finite games, it is equivalent to the existence of a...

متن کامل

On the Existence of Strong Nash Equilibria

This paper investigates the existence of strong Nash equilibria (SNE) in continuous and concave games. We show that the coalition consistence property introduced in the paper, together with the concavity and continuity of payoffs, permits the existence of strong Nash equilibria in games with compact and convex strategy spaces. The coalition consistency property is a general condition that canno...

متن کامل

Computing Pure Nash and Strong Equilibria in Bottleneck Congestion Games

Bottleneck congestion games properly model the properties of many real-world network routing applications. They are known to possess strong equilibria – a strengthening of Nash equilibrium to resilience against coalitional deviations. In this paper, we study the computational complexity of pure Nash and strong equilibria in these games. We provide a generic centralized algorithm to compute stro...

متن کامل

On Strong Equilibria and Improvement Dynamics in Network Creation Games

We study strong equilibria in network creation games. These form a classical and well-studied class of games where a set of players form a network by buying edges to their neighbors at a cost of a fixed parameter α. The cost of a player is defined to be the cost of the bought edges plus the sum of distances to all the players in the resulting graph. We identify and characterize various structur...

متن کامل

Efficient Equilibria in Polymatrix Coordination Games

We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study α-approximate k-equilibria of these games, i.e., outcomes where no group of at most k players can deviate such that each member increases his payoff by at least...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009